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The moving contact line: the slip boundary condition 
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Thesingularity a t  the contact line which is present when the usual fluid- 
mechanical modelling assumptions are made is removed by permitting the fluid 
to slip along the wall. The aim of this study is to assess the sensitivity of the 
overall flow field to the form of the slip boundary condition. Explicit solutions 
are obtained for three different slip boundary conditions. Two length scales 
emerge: the slip length scale and the meniscus length scale. It is found that on 
the slip length scale the flow fields are quite different; however, when viewed 
on the meniscus length scale, i.e. the length scale on which almost all fluid- 
mechanical measurements are made, all of the flow fields appear the same. It is 
found that the characteristic of the slip boundary condition which affects the 
overall flow field is the magnitude of the slip length. 

1. Introduction 
A contact line is located at the intersection of a fluid-fluid interface (formed 

by two immiscible fluids) and a solid bounding wall. A moving contact line can be 
found in many different situations; some cases in which it plays a central role are 
the spreading of adhesives, the flowing of lubricants into inaccessible locations, 
the coating of solid surfaces with a thin uniform layer of liquid, the displacement 
of oil by water through a porous medium, etc. However, the dynamics of the 
fluid surrounding the contact line, and hence the contact line itself, are poorly 
understood. Dussan V. & Davis (1974) have shown that the difficulty arises from 
the fact that the usual fluid-mechanical modelling assumptions break down in 
this region, hence a proper model for the fluids near the moving contact line is 
not known. They have shown that if the fluids are Newtonian and incompressible 
and do not slip along the rigid bounding surface (the fluids are also assumed to 
undergo a generalized rolling-type motion) then unbounded forces are produced 
at  the contact line (refer to the article for a precise statement). Such a singularity 
is present in the flow field given by Huh & Scriven (1971), which was obtained 
under more restrictive conditions. Ludviksson & Lightfoot (1968) avoided these 
difficulties by assuming that the surface is prewetted by the spreading fluid. In  
part they were motivated by the observations of Bascom, Cottington & Single- 
terry (1964), who detected a very thin primary film (less than 100 x 10-lOm thick) 
spreading ahead of a thicker secondary film (approximately 10-6, thick) in a 
system consisting of squalane spreading up a vertical smooth steel plate sur- 
rounded by air. On the other hand, if Ludviksson & Lightfoot had not assumed 
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the presence of a thin film then their equation for the shape of the fluid-fluid 
interface would have been singular at the contact line. Lopez, Miller & Rucken- 
stein (1976) included in their analysis a body force which models long-range 
molecular forces. Upon making the lubrication approximation they derived an 
expression for the shape of a spreading two-dimensional drop; however it has the 
characteristic that the fluid-fluid interface does not make contact with the solid 
surface. Since their body force can be written as a gradient of a scalar and the 
fluid was assumed incompressible, the results of Dussan V. & Davis (1974) can 
be used to conclude that such a fluid exerts an unbounded force at the moving 
contact line, if it is assumed that the contact line exists (this conclusion is 
independent of the lubrication approximation). 

Since the proper model (or models, since there is probably more than one 
mechanism responsible for spreading) for the fluids adjacent to the moving 
contact line is not yet known, one can proceed along two different, although 
complementary, paths: (i) derive models based upon non-equilibrium statistical 
mechanics; (ii) make ad hoc continuum modelling assumptions, solve the asso- 
ciated well-posed boundary-value problems and examine their effect on the 
overall flow field. It is the latter approach which we shall pursue. It will be assumed 
that the fluids are incompressible and Newtonian, and the singularity will be 
removed by permitting the fluid to slip along the wall in the immediate vicinity 
of the moving contact line. The aim of this investigation is to determine how 
great an effect the specific details of the slip model have on the motion of the 
fluid when it is examined on length scales used by fluid mechanicians. Since it 
removes a singularity which is responsible for an unbounded force and undefined 
interfacial shape, we know already that its presence will be detectable. However, 
one should keep in mind that no relevant experiments have been performed to 
document slip for slow flow near a moving contact line. Huh & Scriven (1971) 
have suggested, among a long list of other things, permitting the fluid to slip 
near the moving contact line; however they were motivated by the miscon- 
ception that the no-slip boundary condition and the mutual displacement of two 
viscous fluids along a solid wall are kinematically incompatible concepts. 

In  $ 2  the motion of the fluid near the moving contact line formed when a 
plate is removed at an arbitrary angle from a semi-infhite domain of fluid is 
analysed. In order to make the problem tractable, the velocity and pressure 
fields and the shape of the free surface (since there is no second fluid the fluid- 
fluid interface is called a free surface) are expanded in terms of the Reynolds 
number, the capillary number and the critical static contact angle. The analysis 
is limited to cases in which the critical static contact angle is close but not 
necessarily equal to the angle a t  which the plate is removed from the fluid. The 
solution for the velocity field, to lowest order, is obtained in terms of an arbitrary 
slip velocity along the plate by using the Mellin transformation. Three specific 
slip boundary conditions are investigated and exact explicit expressions are 
obtained for their corresponding velocity fields for the case when the plate is 
removed a t  an angle of 90" (a solution for an arbitrary angle is presented in the 
appendix). In  $ 3 the lowest-order dynamic contribution to the shape of the free 
surface is calculated exactly in terms of an integral which must be evaluated 
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FIGURE 1. A pIate inclined at an angle cz with respect to the horizontal is inserted into a field. 
The free surface is assumed to approach a flat horizontal configuration far away from the 
plate. 

numerically, and approximately by performing an asymptotic expansion in 
terms of the Bond number about a singular limit. The results and conclusions 
appear in $8 4 and 5 ,  respectively. 

2. Analysis 
A plate of infinite extent is either inserted into or withdrawn from a semi- 

infinite domain of fluid at a constant velocity U, (figure 1). The flow is assumed 
to be two-dimensional and steady, and the geometry of the free surface is assumed 
to be stationary, all with respect to our frame of reference. The contact line, 
even though it appears to be at rest, is considered to be moving owing to its 
relative motion with respect to the plate. A polar co-ordinate system is used 
whose origin is located at the contact line. 

The equations of motion and boundary conditions in dimensionless form are: 
the Navier-Stokes equation 

the equation of continuity 

the kinematic boundary conditions 

v.u  = 0; 

u . & = o  on + = o ,  
u . n =  0 on + = $ ( T ) ,  
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where n is a unit outward normal to the free surface, which is located at 
{ ( r ,  #(r))10 < r < a}; the dynamic boundary conditions 

7.T.n = 0 on # = # ( r ) ,  (2.3) 

where T is the stress tensor and T is a unit tangent vector to the free surface, 
i.e. T. n = 0, and 

the slip boundary condition 
u = U(r)P on # = 0, 

where U(r )  is a prescribed function; and that the critical static contact angle 

= #s (2.6) 

where #s is either the advancing or the receding static contact angle depending 
on whether Uo.P(0) is positive or negative (these angles are defined to be the 
static angles approached in the limit as I UoI -+ 0). The fact that these two contact 
angles differ, often referred to as contact-angle hysteresis, has been documented 
experimentally and is widely accepted; the reason for the difference is not 
known, although there are many speculations (Zisman 1964; Johnson & Dettre 
1964). The specific set of functions assumed for U(r)  appears after (2.15). The 
rationale behind this choice and the diversity represented by this set are dis- 
cussed a t  the beginning of @ 4  and 5. 

The dimensional forms of the variables appearing in the above equations are 

uuo, P+,, TflIL,, rL,, L,t/UO, 

where Uo = Uo.P(0) is the speed of the plate, is the surface tension and L, is 
the slip length (its exact definition is intimately related to U(r)  in (2.5) and it 
will be discussed in more detail later). The parameters are the Reynolds number 
Re = Uo L,/v, the capillary number C = Uo,u/a, the Bond number B = pgLE/cr, 
the angIe between the free surface far from the wall and the wall, a = lim #(r) ,  
and the normalized critical static contact angle E = (9, - .)/a. 

The dependent variables are expanded asymptotically in Re, C and e in the 
limit as each parameter approaches zero: 

r--t m 

The above expansions simplify the problem in the following way: the expansion 
in Re linearizes the Navier-Stokes equation; the expansion in C gives rise to a 
domain perturbation for the free surface about its static configuration, and the 
expansion in E gives rise to a static free-surface profile which is close to the curve 
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4 = a. Later, when solving for the shape of the free surface, an expansion will 
also be made in B in the limit as B+O; however in this case the expansion is 
singular. 

Lowest order 

The Navier-Stokes equation and the dynamic boundary condition (2.4) give 

0 = - VPooo - Bk 

and Pooo(r, a) = 0 with #ooo(r; B )  = a. The solution for Po,, is 

Pooo = - Br sin ($ - a). 

To lowest order the fluid is static and in a wedge configuration. 

First order 

Again, to this order the fluid is static. The Navier-Stokes equation and the 
dynamic boundary condition (2.4) give 

0 = VPOOI 

and ;& ( Y 2 T )  d’ool = rB$ool-Pool, 

subject to the conditions given by (2.6) that 

$oo1(O;B) = a 
and that the free surface becomes horizontal as r + 00, i.e. 

The solution to the above is 

The static configuration given by the sum of the above and the lowest-order 
mode corresponds to the configuration attained in the limit as U, -+ 0. 

Second order 

This is the lowest order at which the fluid is in motion. The Navier-Stokes 
equation and the continuity equation give 

0 = - VP0,, + v2uooo, v.  uooo = 0. (2.71, (2.8) 

The kinematic boundary conditions (2.1) and (2.2) give 

uooo.$ = o on + = ~ , a ,  (2.9), (2.10) 

while the dynamic boundary conditions (2.3) and (2.4) give 

(2.11) 
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and 

where uoo0 = uooo P + voo0 4. The slip boundary condition ( 2 3 )  gives 

uoo0 = U(r )  on $ = 0. (2.13) 

The aim is to obtain a solution to the above well-posed problem. 
The solution of the second-order problem separates into two parts: first, one 

seeks a solution for the velocity field [this involves (2.7)-(2.1 1) and (2.13)] which 
is unaffected by the form of the body force as long as it is conservative; second, 
one solves (2.12) for the shape of the free surface. In order to obtain the general 
solution for the velocity field we proceed in the usual way and introduce the 
stream function $: (uooo, vooo) = (-r--la$/a$, a$/&). Taking the curl of (2.7) 
gives the governing equation for $, the biharmonic equation: 

The boundary conditions given by (2.9)-(2.11) and (2.13) become 

(i) $ = 0 on $ = 0, 

(ii) $ = 0 on $ =a, 
(iii) az$/a$z = 0 on $ = a, 
(iv) a$/a$ = - rU(r)  on q5 = 0. 

A solution to the above is sought by using Mellin transformations (Morse & 
Feshbach 1953, p. 469): 

(2.14a) 

(2.14b) 

where go is determined by the boundary conditions. The transformed biharmonic 
equation and boundary conditions are 

d*$/d$4 + [s2 + (s + 2)'] d2$/dq5' + (8 + 2)'s'P = O,? 

(i) $ = o on 4 = 0, 

(ii) $ = o on $ = a, 
(iii) d2$/d$2 = o on $ = a, 

(iv) d$/d$ = P(s) = A( - rU(r ) )  on $ = 0. 

The solution for $ is 

. (2.15) 
- 
W,$)  = 

F(s)  {sin sa sin [ (s + 2) ($ - a)] - sin (s + 2) a sin s($ - a)} 
- (s + I)  sin 2a  + sin (s + 1) 2 a  

7 Tranter (1948) uses Mellin transforms to solve for the stress within an infinite wedge- 
shaped elastic body which is subjected to  known surface tractions on its boundary. The 
governing equation is also the biharmonic equation. 
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Solutions are sought for z = Qn and for three different slip boundary conditions 
U ( r ) :  

All of these slip boundary conditions have the characteristic that the no-slip 
condition is approached as one moves away from the immediate vicinity of the 
contact line, i.e. lim = 1 for i = 1, 2 and 8. 

An outline of the calculations for the specific case U(r )  = Ul follows. 

T+W 

The inverse Mellin transform is obtained by the technique of summing residues. 

The transform of the slip velocity gives 

F,(s) = - n cosec ns, 

with the restriction that - 2  < go < - 1, where go = Res [see (2.14b)l. The 
stream function in transform space is 

- ncos(q5-Qn)sin[(s+ l)($-Qn)] 

which is analytic in s except a t  simple poles at 0, - 1, & 2, _+ 4, . . . and double 
poles a t  + I, f 3, f 5,  . . . . The Cauchy integral theorem enables us to write 

2 cos2 i s n  sin Qsn 41 = 2 

N I 
@l(s, $)r-.ds = - ;I: Res (7, r+Is = n)  - 2ni /%F1(s, $) r-sds, 

2ni ua-iRfl n= -1 

where RN = N + 4 and %? consists of a semicircle of radius RN with centre a t  
s = 0 and located in the half-plane Re s 2 0 and two straight line segments 
{ c r + i T [ g o  6 g < 0 ; ~  = f RN).  It caneasilybeshown thatforr > 1 

This gives 
m 

n= - 1 $l(r,  q5) = - ;I: Res ($lr-s[s = n), 

or, equivalently , 
m 

n= 0 
n even 

+,(r, $) = - cos ($ - Qn) 2 ( - I)Snr-nsin (n + 1) ($ - Qn) 

m 

n= 1 
n odd 

+ 2n-1 cos ($ - &T) ( - i)*(n-1)r-n{(hr) sin (m + I )  (4 - Qn) 

- ($ - in) cos (n + 1) ($ - in)} + Zn-lr($ - &n) COS (4 - in). 
Summing the series gives an expression valid for 0 < r c 00: 

r cos ($ - in) {r-3 sin 3($ - Qn) + r 5 s i n  ($ - in)} 
1 + 2r-2 cos 2($ - Qn) + r-4 

+ 
2 cos ($ - in) {($ - in) (r-1 cos 2(r$ - in) + r-3) - r--1 (In r )  sin 2 ( 4  - in)} 
IT 

-- 
1 + 2 r 2  cos 2($ -in) + r-4 
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In  a similar manner we solve for the stream functions $2 and ++ associated 
with the slip boundary conditions U(r)  = U2 and U4, respectively. The Mellin 
transforms of U2 and U4 are 

F2(s) = + 47r cosec &r(s + I )  with 

F~(S) = 27r cosec 2 4 s  + 1) 

- 3 < go < - 1 

- 8 < go < - I .  and 

Substituting the above into (2.15) gives 

with 

and 

- - 417 cos ($ - 4.n) sin (s + 1) ($ - 47r) 
sin +7r(s + 1) cos +sn $2 = 

- - 27r cos ($ - an-) sin (s + I )  ($ - in) 
sin 2ns cos +s7r @+ = 

Summing the residues associated with the inverse Mellin transform gives 

2r {(lnr)r2sin2($-&r)+($-47r) ( r 2 ~ 0 ~ 2 ( $ - 4 n ) - r 4 ) )  
7r 

$b2(r,$) = --cos($-47r) 
1 -2r2cos 2($ - +7r) +T4 

and 

{-(I-@)r2sin($-;t.n) +2n--1[r3(lnr)sin2($-&7r) +($- $7r)(r3cos2($-&r) +rS)]} 

sin #($ - +7r)} 

X 
1 + 2r2 cos 2($ -in) +r4 

r% sin #($ - 47r) - r% sin +($ - 47r) + rfr sin 4($ - 47r) + 

Using the explicit expressions for the stream function, we can calculate the 

1 i- 2r2 cos 2($ - in-) + r4 
+ 24s - 

shear stress exerted by the fluid on the plate, 

and the shear force over 0 < r < R, 
f R  I 

F(R) = dr. .Io rr$ Lo 
This gives the folIowing relationships: 

and 
2 3 2  

InR2, F, = - --lnR2, 
2 3 2  F 

l - n 1 - R 2  7rI+R2 

(2.16) 

(2.17 a) 

(2.17 b )  

(2.17 c) 

2R4 
lnR2- - 

% = ; m 2  1 + R '  
2 R2 



The moving contact line 673 

3. The shape of the free surface 
The terms on the right-hand side of (2.12) are evaluated for each of the flow 

fields derived above. The following notation is adopted: {q5+ &(a, -$n;B), 
fili = 1,2,  *} denotes the functions q5010, Polo (a, -$n;!B) and 

2r-1~~~ooo/~q5 + UOOO} - 4310 + 4 
corresponding to the stream functions $1, $z and $*, respectively. Equation 
(2.12) becomes 

where hi = r&, 
d'hi/d@-Bhs = fi-Pi(a,-$n;B) (i = 1,2,*), (3.1) 

4 - 12r2 + 4n-l(r5 + 6r3 + 5r + [6r - 2r3] In r> 
{ 1 + r2}>" f i ( T )  = 9 

4r { - .f4+ 6r2 - 5 - [6 + 2r2] In r}  
f 2 ( 4  = ; (1 - r2)3 

9 

- 4 + 1 2r2 + 4n-l(r6 + 6r3 + 5r + [6r - 2r3] In r} 
{ 1 + r2}3 f & r )  = 

1 +Y) (1 + 8r- 30r2 + 8r3+r4) + (1 +r2)  (1 + 3r- 3r2-r3)} 
ra( 1 + 9.73 

+ 24 

The boundary conditions for hi are 
(i) lim hs = 0, i.e. the contact line is located a t  the origin of the co-ordinate 

r+m 

system; 
(ii) lim d2hi/dr2 = 0, i.e. the free surface approaches a, flat horizontal plane 

r-+ OD 

far away from the contact line. 
The latter boundary condition enables us to replace q(a, in; B)/B by H,(B), 

the vertical distance the contact line is displaced below the free surface a t  
r + a  owing to the motion ofthe$uid. The exact solution of (3.1) is 

hi(r; B )  = Hi@) [l - e-B*r] +hp,(r; B) ,  

The dynamic contribution to the contact angle is given by 

However, i t  is very unlikely that the contact angle is dependent upon gravity, 
i.e. B. It may be helpful to recall the static case for guidance: in order to determine 
completely the shape of the interface, not only must linear momentum and mass 
be conserved, but the configuration of the system must correspond to that of 
minimum energy. It is the latter requirement which determines the value of the 
static conkact angle; e.g. when the solid-fluid interfaces are assumed to possess 

43 F L M  77 



674 E .  B. Dussan V .  

an energy per unit area then the static contact angle is given by the Young- 
Dupre equation, and this relationship does not involve gravity. So far, for the 
dynamic case, we have only been concerned with conserving mass and linear 
momentum and so no conclusion can be drawn about the dynamic contact 
angle. However, it  seems reasonable to assume that the value of the dynamic 
contact angle is also independent of gravity. Upon making this assumption we 
are able to express (3.2) as 

# i ( O )  M -0*54+CS (i = 1,2,$) 

and 

where (C,[i = 1,2, 
approximate relationship has been used: 

Hi@) z ( - 4/7rB4) In B* +C,/Bt (i = I, 2, t) ,  
are undetermined constants, and where the following 

valid for B < 1. 
Since B, the ratio of the slip length to the meniscus length, is most likely much 

less than one, we shall seek an approximate analytic expression for hi by per- 
forming an asymptotic expansion valid for B -+ 0. However, this expansion is 
not uniform in r since B = 0 can be interpreted as corresponding to the case in 
which the no-slip boundary condition is assumed, and it has already been 
established that this boundary condition gives rise to a singularity in the inter- 
facial shape a t  the contact line. Thus two domains emerge, and each has associated 
with it an appropriate expansion for hi and a length scale: the inner region, that 
immediately adjacent to the contact line, in which the viscous and capillary 
forces dominate, has length scale L,; the outer region, where gravity becomes 
an important factor, is scaled by (cr/pg)*. In  addition, the following boundary 
condition is imposed: (iii) q5i(0), the dynamic contribution to the contact angle, 
is considered known. With this additional boundary condition, the value of 
Hi(B) is determined. 

Inner region 

A solution to (3.1) is sought of the form 

hi@; B )  4 1 0 ( 4  +,U1(B) hiIl(T) + . * 
valid in the limit as B -+ 0 and where pu,(B) -+ 0 and BH,(B) -+ 0 as B + 0. The 
solutions for hiIo are 

2r2 4r31n r 2 4 4  1 + r )  
'410 = r#a(o)- l+r2 + + (1 + r2) * 

In  all cases hizo N r#,(O) +47~-lrlnr as r-tm (hgro has an additional term which 
is unbounded in the limit as r -t 00) ; in other words, hi, + co as r+ 00. Without 
the influence of gravity hiIo does not approach a constant as r + 00. 
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Outer region 
In  this region the appropriate independent variable is P = rB4. An asymptotic 
expansion for hi is assumed to have the form 

subject to the boundary condition lim hi#, = Hi,. Hence we have = Ae-S+ Hi,. 
6-+ rn 

The equation governing the next mode is 

subject to the boundary condition lim hi$, = Hi,. The solution is 
& W  

The constants A and C and the gauge function v,(B) are determined by matching 
the outer with the inner solution. 

Matching 

Since the inner solution becomes unbounded as v -+ co, the solutions are matched 
by assuming that there exists an intermediate region in which both solutions are 
valid. This region is characterized by the variable P = ry(B) = PB-iq(B), where 
ord (BJ)  < ord (7) < 1 as B+ 0. Matching terms of different orders gives 

(y M 0677216, Euler’s constant). The solutions can be expressed in the form of 
an expansion uniformly valid for 0 < r < co by adding together the inner and 
outer expansions and subtracting the common part: 

43-2 
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2r2 4r In r 24r*(r - 1) 
h i s - - -  

1+r2 n ( l+rz )+  l+r2  

+B-*[e-131r- 11 [4n-l(lnB*+y- 1)-q54(0)+Bi(2n)4] 

e-5 
- 

In  the expression for hg the outer solution is presented up to O(B-2). The solutions 
for Hi are 

4 4 
H~ nBt - ~n (2) B4 + B4 ( $,(o) +; (1 - 7)) for i = 1, 2 ,  

4. Results 
The velocity fields derived in the previous section can be compared on the slip 

length scale and on the meniscus length scale. From the point of view of the slip 
length scale they are quite different. First, the rate at which U(r )  approaches 
zero as P-+ 0 is different, i.e. 

1 (i = 1), 
limdU/dr = 0 (i = 2), 

see figure 2 .  The tangential component ~ ~ ~ ~ l ~ = ~ ,  of the surface traction vector 
evaluated at the wall also differs quite a bit; see figure 3. For i = 1,2) ~ ~ ~ ~ l ~ = ~  
approaches zero as r - f  0 (note the switch in sign for i = 2); however, for i = Q 
the stress becomes unbounded. The force F ,  given by (2.16), also differs among 
the various models (see figure 4), although P(0) = 0 even for the case i = 4. On 
the other hand, the dynamic contribution hi to the interfacial shape is quite 
similar for all three slip models; see figure 5. 

While many differences exist on the slip length scale, few, if any, are perceptible 
on the meniscus length scale. I n  all three cases 

1 co (i = 9); r+o 

U-t l ,  T ~ ~ I ~ = ~  N -4/nr, B’ N - 4 ~ - ~ l n R  as r,R-+oo, 
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FIGURE 3. The tangential component of the surface traction vector evaluated 
at various positions along the plate. Curves as in figure 2. 

-3.0 - 

R 

FIGURE 4. The tangential component of the force exerted by the fluid on the plate from 
the contact line to a position R. Curves as in figure 2. 

and 

as long as B < 1. In  addition, all three models give rise to the same interfacial 
shape hi; see figure 6. Nevertheless, all of these quantities are sensitive to the 
magnitude of the slip length L,. Since this seems to be the only characteristic of 
the slip model which affects the flow on the meniscus length scale, a solution is 
included in the appendix in which a can take on any value between 0 and 7~ 
(exclusive). This particular solution coincides with the case i = 1 when a = in. 

All of the above-mentioned quantities come directly from solutions to the 
second-order problem. Hence, in order to express the dynamic contact angle, or 
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0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

r 

FIGURE 5. The shape of the free surface viewed on the slip length scale for the three slip 
models. It is assumed that {q5i(0) = O l i  = 1, 2, +}. ---, i = 1; -- , i = 2; -, i = 4. 

t 

I I , , 1 , L 

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

TB* 

FIGURE 6. The shape of the free surface viewed on the meniscus length scale 
for two extreme values of the slip length. ---, B* = -, B6 = 

the vertical displacement of the contact line below the asymptotic level of the 
free surface as T+ a, the entire expansion must be used, i.e. 

m) $8 + Q4010(0)? 
limr$ N ($8-a)/B*+CH(B). 
r+ m 

It has tacitly been assumed that the slip lengths associated with the different 
slip models are the same. It is not at all obvious what criterion should be used 
to compare them. For instance, if 

is used then the value of the slip length associated with U+ is not well defined 
because the integral does not exist. Until a more precise criterion based on some 
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physical principle can be established, the following attitude will be taken: the 
slip lengths appearing in the above three models are equivalent because they all 
predict the same F(R), ~ ~ $ l + = ~  and H ( B )  on the meniscus length scale. 

5. Discussion and conclusions 
In  order to remove the singularity a t  the moving contact line, while simul- 

taneously retaining a Newtonian model for the fluid, it has been established 
(Dussan V. & Davis 1974) that the velocity field must be continuous at the 
contact line. This implies, for the specific geometry considered above, that the 
velocity of the fluid at the contact line is zero. On the other hand, owing to the 
impressive success of the no-slip boundary condition in predicting flow fields 
under ‘normal’ conditions, it seems appropriate to assume that the fluid ap- 
proaches this condition away from the contact line. Hence the speed U(r)  of the 
fluid a t  the wall must have the following characteristics: 

(i) lim U(r )  = 0, (ii) lim U(r)  = 1, 
r-tO r+ m 

when the dimensionless speed of the wall is 1. However, the form of U(r )  in the 
intermediate region, i.e. the region in which U increases from 0 to 1, is not at  all 
obvious. One might inquire as to the extent to which this region affects the 
overall velocity field. To investigate this point, we have examined in detail the 
flow field associated with three different slip boundary conditions. These were 
chosen specifically because of their behaviour as r+O. Since condition (i) 
removes a singularity, it was thought that this particular set of boundary con- 
ditions, each possessing a vastly different value of d Uldr at r = 0, would be the 
most likely to illustrate the sensitivity of the entire flow field to the functional 
form of U(r ) .  The diversity within this set can be established from another point 
of view. One might think that a rational approach for posing a slip boundary 
condition is 

where the explicit form of the function f depends on the physical properties of 
the fluid and solid. More specifically, it has been suggested (Goldstein 1965) 
that f should be a linear function, i.e. 

Tr$l$=o = f ( U - l ) ,  (5.1) 

where 3, a constant, is called the slip coefficient. The three slip models investi- 
gated in the previous section can be interpreted in terms of the above in two 
different ways. First, in order to make a direct comparison with (5.2), Pi, a 
‘local slip coefficient ’ defined by 

is evaluated along the wall. Each case behaves differently: PI = 0 a t  r = 0 and 
approaches a constant value as r -+ 00; P2 = 0 a t  r = 0 and tends to infinity as 
r-foo (Pz N 4 r / ~  as r-tco); = -co a t  r = 0, becomes positive at r z 3 and 
tends to zero as r-+cO; refer to figure 7. Also, the functionf(U - l), appearing in 
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(5.1) can be determined for each slip model. This is accomplished by replacing r 
in (2.17) by thefunctionr(U- 1)givenby 

- U / ( U -  1) (i = 1), 
r ( U -  1) = [- U / ( U -  1)]4 (i = 2), 1 [ - U/( u - 1)]2 (i = 8); 

refer to figure 8. Since it has already been established that U ( r )  must obey 
conditions (i) and (ii), it  follows that f evaluated in the region as 1 - U-t  0 
applies to the flow at large r ,  i.e. away from the moving contact Iine, where the 
fluid is asymptotically approaching the no-slip condition; while f evaluated as 
1 - U-+ 1 applies to the flow in the slip region. It is interesting to note that not 
only do these slip models differ near the contact line but they also possess a 
vastly different behaviour away from the contact Iine, i.e. as r-+m we have 

-+ constant, p2 -+ co and p4 -+ 0. In  spite of these differences it was shown in the 
previous section that, upon examining the characteristics of their corresponding 
velocity fields on the meniscus length scale, they all appear the same. Hence a 
fluid mechanician who does not make observations on. a length scale less than 
about a micrometre will find it difficult to distinguish between some vastly 
different slip models. 

There is, however, one characteristic which at least distinguishes U4 from U, 
and U,. The velocity field associated with U4 has the property that lVul -tco 
as r-+ 0. This in itself does not make i t  noteworthy: even though it gives rise 
to an unbounded stress tensor at r = 0, the physically relevant quantities 
such as force and interfacial shape remain well defined. What makes this case 
different is the fact that the contact line is not a material line. That is to say, a 
material point initially located on the fluid interface reaches the contact line in a 
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FIUTJRE 8. The slip function corresponding to the three slip 
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$finite interval of time; once a t  the contact line, it moves along the solid-fluid 
interface in the direction of the motion of the wall. Hence the solid-fluid interface 
is not a fluid material surface. On the other hand, for U, and U, the contact line 
is a material line and the solid-fluid interface always consists of the same fluid 
material points (it is necessary but not sufficient that lVul -+a as r+O; for a 
discussion on the differences between bounding surfaces and material surfaces 
refer to Dussan V. 1976). Hence, if one is interested in the situation in which a, 
surface-active agent is present on the fluid interface then one might be some- 
what concerned with the functional form of U(r ) :  the motion associated with 
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U4 will cause the surface-active agent to coat the walls, while the other models 
will not have this characteristic. 

Over the past 150 years much effort has gone into the study of static menisci, 
with a significant portion focused on the static contact angle. A vast amount of 
experimental data has been collected on the value of the static contact angle 
for different fluid-fluid-solid systems (Jasper 1972). Hence it is not surprising 
to find that almost all experimental studies on the moving contact line heavily 
emphasize measuring the dependence of the dynamic contact angle on the speed 
of the contact line, e.g. Ablett (1923), Yarnold & Mason (1949), Rose & Heins 
(1962), Schonhorn, Frisch & Kwei (1966), Elliot & Riddiford (1967), Schwartz & 
Tejada (1972) and Hoffman (1975). However, upon comparing figure 5 with 
figure 6, it can be concluded that measuring the dynamic contact angle may be 
difficuIt owing to the rapid variation in the shape of the interface close to the 
contact line. On the slip length scale (figure 5), it  is evident that $olo(0) = 0 (this 
gives a 90" contact angle); but on the meniscus length scale (figure B ) ,  the dynamic 
contribution to the contact angle appears to be positive with a magnitude 
dependent on the speed of the contact line (recall that the ordinate of figure 6 
must be multiplied by U,,u/(agp)* to make it dimensional). Hansen & Toong 
(1  971) draw the same conclusion on the basis of their analysis of a liquid displacing 
a gas through a circular capillary tube. They find that the shape of the interface 
undergoes a rapid change very close to the moving contact line. (They handle the 
singularity by ignoring the flow field within a domain of radius I, surrounding 
the moving contact line. Any boundary condition needed is applied to the outer 
surface of this domain. The reported rapid change in the shape of the interface 
occurs outside but close to the ignored region.) In  addition to the fact that the 
above-mentioned:experimental studies are most likelyreporting apparent contact 
angles, it  i s  not at all obvious that these measurements are independent of the overall 
con$guration of the materials, i.e. that the measurements depend only on the pro- 
perties of the materials involved. 

Removing the singularity a t  the moving contact line by using a slip boundary 
condition has introduced two parameters: the slip length L, and the dynamic 
contribution Cq5,,,( 0) to the contact angle. One could deriveexpressions for these 
quantities based on a more detailed knowIedge of the displacement process. For 
example, one may use molecular models (Hansen & Miotto 1957) or continuum 
models based on events taking place on the submicron length scale where the 
moving contact line may appear very unsteady owing to the roughnesses in the 
solid surface, in which small quantities of fluid may become trapped. In this 
case it might make sense to interpret C$,,, and L, as statistically averaged 
quantities. On the other hand, one could examine flow fields in different geo- 
metries and evaluate Cq5,,, and L, by comparing experimental observations with 
analyses. This approach may prove to be sufficient from a fluid-mechanical point 
of view since it has been shown here that the overall flow field is rather insensitive 
to the details of the slip model. However, for this to be successful, i.e. for the use 
of a slip boundary condition to remove the singularity, the L, and C$,,, so deter- 
mined must be independent of the geometry of the experiment used to evaluate 
them. 
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Appendix 
Since the overall flow does not seem to be sensitive to the details in the slip 

model near the contact line, a solution is presented for a specific slip model in 
which a may vary between 0 and IT. 

The speed of the fluid along the wall is assumed to have the form 

rniza + 1 +In rn12a) sin 2a i 
U ( r ; a )  = 2a 2arni2a - sin 2a 1 - 2a[rn/2a - 112 +-I* 

Evaluating P(s; a )  gives 
4a2 

2a - sin 2a 
{ - (s + i) sin 2a + sin [(s  + I )  2a]}  

sin2[(s + 1 )  2a] 
P(s;a)  = > 

which yields 
- 
$(%$;a) = 2a - sin 2a 

4a2 (sinsasin (s + 2 )  ($ - a )  - sin (s + 2 )  asins(# -a)] 
sin 2[(s + 1 )  2a] 

Evaluating the inverse Mellin transformation by summing residues gives 

[2a - sin 2a] 

[a cos a sin (q5 - a )  - ($ - a) sin a cos (# -a)] [I + rnia cos [($ - a)  n/a]] - - +zn/e 

11-(r,$;a> 2 

1 + 2r-77la cos [ ($ - a )  7r/a] + r-2nia 

rl-nia ( l n r )  sinacos ($-a)sin[(q5-a)1~/a] 

rl-n/a[a sin a cos (q5 - a) - (q5 - a) cos a sin (q5 - a)]  [ 1 - ~ 4 ~ 1  sin [ ($ - a)  77/2a] 

rl -n/a2 (In T )  cos a sin (q5 - a) cos [ ($ - a )  n /2a]  [ 1 + r4a ]  

+ 

1 + 2r-"/a cos [($-a) n/a] + r--2nla 

- 
1 + 2r-nla cos [($ -a)  ;./a] + r--2nla 

1 + 2r-771" cos ($ - a )  n/a + r--tn/a 
+ 
- r [ a  cos a sin (q5 - a) - (# - a )  sin a cos ($ - a)] .  
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